SMT顶级人脉圈社区

 找回密码
 立即加入

快捷登录

贴装圈
查看: 3767|回复: 0

【干货】SMT电阻器常见的失效模式与失效机理及案例解析!你值得拥有!

    [复制链接]
UID
1
主题
1652
积分
12659
三星币
251
admin实名认证 手机认证 发表于 2019-8-3 03:56:58 | 显示全部楼层 |阅读模式
                                                                                                   





SMT 顶级人脉圈一个共享人脉资源、实现职业晋升的专业圈子



SMT掌圈




本篇文章下载





失效模式:各种失效的现象及其表现的形式。失效机理:是导致失效的物理、化学、热力学或其他过程。
1、电阻器的主要失效模式与失效机理为1) 开路:主要失效机理为电阻膜烧毁或大面积脱落,基体断裂,引线帽与电阻体脱落。2) 阻值漂移超规范:电阻膜有缺陷或退化,基体有可动钠离子,保护涂层不良。3) 引线断裂:电阻体焊接工艺缺陷,焊点污染,引线机械应力损伤。4) 短路:银的迁移,电晕放电。
2、失效模式占失效总比例表(1)、线绕电阻失效模式占失效总比例开路90%阻值漂移2%引线断裂7%其它1%
(2)、非线绕电阻失效模式占失效总比例开路49%阻值漂移22%引线断裂17%其它7%

3、失效机理分析    电阻器失效机理是多方面的,工作条件或环境条件下所发生的各种理化过程是引起电阻器老化的原因。

(1)、导电材料的结构变化薄膜电阻器的导电膜层一般用汽相淀积方法获得,在一定程度上存在无定型结构。按热力学观点,无定型结构均有结晶化趋势。在工作条件或环境条件下,导电膜层中的无定型结构均以一定的速度趋向结晶化,也即导电材料内部结构趋于致密化,能常会引起电阻值的下降。结晶化速度随温度升高而加快。    电阻线或电阻膜在制备过程中都会承受机械应力,使其内部结构发生畸变,线径愈小或膜层愈薄,应力影响愈显著。一般可采用热处理方法消除内应力,残余内应力则可能在长时间使用过程中逐步消除,电阻器的阻值则可能因此发生变化。    结晶化过程和内应力清除过程均随时间推移而减缓,但不可能在电阻器使用期间终止。可以认为在电阻器工作期内这两个过程以近似恒定的速度进行。与它们有关的阻值变化约占原阻值的千分之几。    电负荷高温老化:任何情况,电负荷均会加速电阻器老化进程,并且电负荷对加速电阻器老化的作用比升高温度的加速老化后果更显著,原因是电阻体与引线帽接触部分的温升超过了电阻体的平均温升。通常温度每升高10℃,寿命缩短一半。如果过负荷使电阻器温升超过额定负荷时温升50℃,则电阻器的寿命仅为正常情况下寿命的1/32。可通过不到四个月的加速寿命试验,即可考核电阻器在10年期间的工作稳定性。    直流负荷—电解作用:直流负荷作用下,电解作用导致电阻器老化。电解发生在刻槽电阻器槽内,电阻基体所含的碱金属离子在槽间电场中位移,产生离子电流。湿气存在时,电解过程更为剧烈。如果电阻膜是碳膜或金属膜,则主要是电解氧化;如果电阻膜是金属氧化膜,则主要是电解还原。对于高阻薄膜电阻器,电解作用的后果可使阻值增大,沿槽螺旋的一侧可能出现薄膜破坏现象。在潮热环境下进行直流负荷试验,可全面考核电阻器基体材料与膜层的抗氧化或抗还原性能,以及保护层的防潮性能。

(2)、硫化有一批现场仪表在某化工厂使用一年后,仪表纷纷出现故障。经分析发现仪表中使用的厚膜贴片电阻阻值变大了,甚至变成开路了。把失效的电阻放到显微镜下观察,可以发现电阻电极边缘出现了黑色结晶物质,进一步分析成分发现,黑色物质是硫化银晶体。原来电阻被来自空气中的硫给腐蚀了。


(3)气体吸附与解吸膜式电阻器的电阻膜在晶粒边界上,或导电颗粒和黏结剂部分,总可能吸附非常少量的气体,它们构成了晶粒之间的中间层,阻碍了导电颗粒之间的接触,从而明显影响阻值。合成膜电阻器是在常压下制成,在真空或低气压工作时,将解吸部分附气体,改善了导电颗粒之间的接触,使阻值下降。同样,在真空中制成的热分解碳膜电阻器直接在正常环境条件下工作时,将因气压升高而吸附部分气体,使阻值增大。如果将未刻的半成品预置在常压下适当时间,则会提高电阻器成品的阻值稳定性。温度和气压是影响气体吸附与解吸的主要环境因素。对于物理吸附,降温可增加平衡吸附量,升温则反之。由于气体吸附与解吸发生在电阻体的表面。所以对膜式电阻器的影响较为显著。阻值变化可达1%~2%。
(4)氧化氧化是长期起作用的因素(与吸附不同),氧化过程是由电阻体表面开始,逐步向内部深入。除了贵金属与合金薄膜电阻外,其他材料的电阻体均会受到空气中氧的影响。氧化的结果是阻值增大。电阻膜层愈薄,氧化影响就更明显。防止氧化的根本措施是密封(金属、陶瓷、玻璃等无机材料)。采用有机材料(塑料、树脂等)涂覆或灌封,不能完全防止保护层透湿或透气,虽能起到延缓氧化或吸附气体的作用,但也会带来与有机保护层有关的些新的老化因素。
(4)、有机保护层的影响有机保护层形成过程中,放出缩聚作用的挥发物或溶剂蒸气。热处理过程使部分挥发物扩散到电阻体中,引起阻值上升。此过程虽可持续1~2年,但显著影响阻值的时间约为2~8个月,为了保证成品的阻值稳定性,把产品在库房中搁置一段时间再出厂是比较适宜的。
(5)、机械损伤电阻的可靠很大程度上取决于电阻器的机械性能。电阻体、引线帽和引出线等均应具有足够的机械强度,基体缺陷、引线帽损坏或引线断裂均可导致电阻器失效。
电阻——片式厚膜电阻器电极断裂开路1) 样品名称:片式厚膜电阻器2) 背景:型号为5.6KΩ/1206 和47KΩ/1206,在使用一年后发现失效。3) 失效模式:阻值超差和开路。4) 失效机理:面电极的银层断裂是样品开路和阻值增大的原因。5) 分析结论:电极的银层断裂是由于焊接时,在Pb-Sn 焊料边缘的面电极Ag 大量熔于焊 料中,形成边缘的Ag 层空洞,在长期工作过程Ag 的迁移和腐蚀造成空洞的扩大甚至断 开而导致电子开路。6) 分析说明:失效品外观显示,端电极焊接不良(图 1)。X-RAY 观察分析,在端电极和面电极相连的区域发现面电极有断裂空洞(图2),在 与端电极焊料边缘相连的面电极Ag 层部分,都有不连续的现象,形成一条把银层断开的 空洞;同时,样品研磨切面也可见到银层空隙,开封都能观察到面电极银层不连续带状 空隙(图3),因此,面电极在焊料边缘的空隙造成银层不连续是造成样品电阻增大和开 路的真正原因。面电极在焊料边缘出现不连续或空洞的原因是在焊接过程中,靠近端电极的面电极 中的Ag 在焊接过程中大量损耗掉,“熔化”在焊料之中,形成边缘面电极局部区域的Ag 层空洞。在长时间的使用过程中,由于Ag 迁移或者被腐蚀,空洞的扩大导致银层开路。






电阻——硫化有一批现场仪表在某化工厂使用一年后,仪表纷纷出现故障。经分析发现仪表中使用的厚膜贴片电阻阻值变大了,甚至变成开路了。把失效的电阻放到显微镜下观察,可以发现电阻电极边缘出现了黑色结晶物质,进一步分析成分发现,黑色物质是硫化银晶体。原来电阻被来自空气中的硫给腐蚀了。

电极的银层断裂是由于焊接时,在Pb-Sn 焊料边缘的面电极Ag 大量熔于焊 料中,形成边缘的Ag 层空洞,在长期工作过程Ag 的迁移和腐蚀造成空洞的扩大甚至断开而导致电子开路。



如果经过正常生产的SMT回流焊接,以上部位出现缝隙(致密性问题),说明电阻耐热冲击差,电阻也会有硫化危险。灌封硅胶问题有机硅橡胶按成分有单组分和双组分两种,按固化反应类型有缩合型和加成型两类。加成型硅胶固化时没有副产物,所以电气特性和固化特性稳定,无腐蚀性,收缩率小。缺点是催化剂遇到下列物质(如硫、胺、磷化合物)易中毒,而不能固化。在DC/DC模块电源中通常使用加成型硅橡胶。加成型硅橡胶RTVS6354LV是双组分硅胶,A/B两部分硅胶按质量比1∶1混合后,含乙烯基的聚二甲基硅氧烷作为基础聚合物,低相对分子质量的含氢硅油作为交联剂,在铂系催化剂作用下进行交联反应,开始固化。高温可缩短固化时间。把该硅胶送到微电子材料与元器件微分析中心,进行硅胶成分分析,结果显示硅胶成分中不含硫。虽然硅胶本身不含硫,但硅胶具有多孔结构,对空气中极性分子硫化物有较强的吸附作用[1-2]。单组分和双组分的硅胶都有这种特性。综上所述,灌封硅胶DC/DC模块电源的电阻硫化是由于周围空气中含有硫化物,而硅胶对硫化物有吸附作用,同时电阻端电极和二次保护包覆层交界不管是电镀存在的孔隙或缝隙,还是焊接工艺异常造成的缝隙,空气中的硫化物通过硅胶的吸附,硅胶具有发达的微孔结构,硅胶的比表面积达500~600m2/g[3],这样硅胶中的硫化物浓度不断增加,由于硅胶灌注在电阻上面,这样硅胶中的硫化物很容易通过电阻端电极和二次保护包覆层交界孔隙或缝隙进入到电阻面电极,导致面电极材料中的Ag被硫化,生成低电导率的硫化银,从而导致电阻的阻值增大直至开路。
防硫化电阻为了避免电阻硫化,最好的方法是使用防硫化电阻(或全薄膜工艺电阻,或插件电阻)。风华高科公司防硫化电阻(图略)是通过延长二次保护包覆层设计尺寸,同时让底层电极覆盖上二次保护,并达到一定尺寸,在电镀时,Ni层和Sn层均能容易地覆盖上二次保护层。这样避免了相对薄弱的二次保护包覆层边缘直接暴露于空气环境中,提高了产品的防硫化能力。国巨,华新科,ROHM,VISHAY等公司都有自己的防硫化电阻,设计思路是从包封、覆盖角度出发的。ROHM公司的防硫化电阻设计,保护层采用碳系导电树脂胶,覆盖在面电极上,并延伸到二次保护层上。另一种防硫化电阻设计是从材料角度出发,如:提高面电极Ag/Pd浆料中钯的含量,把钯的含量(质量分数)从通常的0.5%提高到10%以上,由于浆料中钯含量的提高,钯的稳定性提高了电阻抗硫化能力。实验证实,这种方法有效。总的来说,防硫化电阻设计有两种思路,一种思路是从包封覆盖角度出发,另一种思路是从材料角度出发。相对而言从材料角度出发,能更好保证电阻不被硫化。涂敷三防漆PCB单板组件涂敷三防漆,这样增加了一层保护膜,起到隔绝空气防止电阻硫化的作用。三防漆的类型有很多,如:丙烯酸类、聚氨酯类等。德国ELANTAS公司BectronPL4122E改性醇酸树脂三防漆,具有优良的特性。灌封胶的选型既然灌封硅胶对硫化物有吸附作用,导致硫化物不断积累,浓度增大,进而产生硫化作用。而模块电源为了散热(或使热分布均匀),又需要灌胶,因此灌封胶的选型就很重要。
根据目前大规模工程使用情况,用高导热的聚氨酯灌封胶可避免电阻硫化的产生。全封闭设计灌胶的模块电源采用全六面封装结构。这种方法需要实践去检验,因为模块电源在它的引出脚,即:针脚周围,很难真正做到完全密闭。还有一个解决方法,就是采用真正的气密性结构设计,模块电源内部充入氮气或氩气,这个主要应用在军工或航空航天产品中。开放式结构既然硅胶对硫化物有吸附作用,还有一种方法就是舍弃灌封硅胶采用开放式结构。开放式结构要从提高电源的转换效率,器件热分布均匀,强制散热等方面去综合考虑。从目前来看,开放式结构的模块电源虽有硫化案例,但相比于采用灌封硅胶的模块,电源硫化风险大大降低。陶瓷基板电源模块电源采样陶瓷基板,直接将电阻印制在陶瓷基板上,陶瓷基板有很好的导热性。但陶瓷基板一定要涂敷三防漆,以防止在高温高湿、电场力的作用下的银迁移,从而避免线路之间出现短路。IC封装电源采用IC封装电源。由于IC封装电源和IC芯片一样,具有优良的密封性,它完全可以隔断外界含硫气体同电源内部厚膜片式电阻接触。
随着工业发展,大气中含硫气体越来越多,这些气体主要有SO2、SO3、CS2、H2S、COS。其中SO3、CS2常温下是液体,40℃以上是气体。根据前期试验和一些研究分析,对于厚膜片式电阻器的性能,SO2、SO3影响甚小,CS2几乎没有任何影响,也就是说主要是大气中H2S和COS作用。H2S和O2一起与银发生化学反应生成硫化银,COS在紫外线和一定的湿度下,产生自由基,然后与银发生反应生成硫化银。笔者对厚膜片式电阻器的硫化机理做出了阐述,并对预防措施一一做了说明,虽然是结合DC/DC模块电源产品,但对其他电子产品同样有参考意义。




SMT助手1、内容搜索



2、SMT云盘



3、SMT人才网



SMT顶级人脉圈平台高端微信群欢迎大家踊跃加入在这里我们一起学习、交流、合作

















免责声明:本公号转载的文章、图片、音频视频文件等资料的版权归版权所有人所有,转载目的在于传递更多信息,并不代表本公众号赞同其观点和对其真实性负责。原作者认为其作品不宜供大家浏览,或不应无偿使用,请及时与我们联系,以迅速采取措施,避免给双方造成不必要的损失。



               

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即加入

x
【SMT顶级人脉圈】-SMT制造实力派移动互联网新媒体-SMT业內最具人气最活跃最有影响力微信公众号
您需要登录后才可以回帖 登录 | 立即加入

本版积分规则

关闭

站长推荐 上一条 /1 下一条

 
在线客服
点击这里给我发消息
咨询热线
18126220098

微信扫一扫,私享最新原创实用干货

小黑屋| 手机版| SMT顶级人脉圈社区 ( 陕ICP备13003208号-1 )

GMT+8, 2025-4-27 03:31 , Processed in 0.059728 second(s), 7 queries , Gzip On, MemCache On.

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表